Review of EEG-based pattern classification frameworks for dyslexia
نویسندگان
چکیده
منابع مشابه
Nonnegative Tensor Factorization for EEG Pattern Classification
Learning fruitful representation from data is one of fundamental problems in machine learning and pattern recognition. Various methods have been developed, including factor analysis, principal component analysis (PCA), independent component analysis (ICA), manifold learning, and so on. Among those, nonnegative matrix factorization (NMF) has recently drawn extensive attention, since promising re...
متن کاملClassification of EEG-based motor imagery BCI by using ECOC
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
متن کاملPCA+HMM+SVM for EEG pattern classification
Electroencephalogram (EEG) pattern classification plays an important role in the domain of brain computer interface (BCI). Hidden Markov model (HMM) might be a useful tool in EEG pattern classification since EEG data is a multivariate time series data which contains noise and artifacts. In this paper we present methods for EEG pattern classification which jointly employ principal component anal...
متن کاملClassification of EEG Signals Based on Pattern Recognition Approach
Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were ...
متن کاملClassification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brain Informatics
سال: 2018
ISSN: 2198-4018,2198-4026
DOI: 10.1186/s40708-018-0079-9